Automated Train Identification and Train Position Monitoring at New York City Transit

Author:

Lehmann Shay1,Reddy Alla1,Samsundar Chan2,Huynh Tuan1

Affiliation:

1. Data, Research and Development (DRD), Operations Planning, New York City Transit Authority, New York, NY

2. Signal and Train Control, Capital Program Management, New York City Transit Authority, New York, NY

Abstract

Like any legacy subway system that first opened in the early 1900s, the New York City subway system operates using technology that dates from many different eras. Although some of this technology may be outdated, efforts to modernize are often hindered by budgetary limits, competing priorities, and managing the tradeoff between short-term service disruptions and long-term service improvements. At New York City Transit (NYCT), the locations of all trains on all lines are not visible to any one person in any one place and, for much of the system, train locations can only be seen at field towers for the handful of interlockings in its operational jurisdiction as result of the legacy signal system, which may come as a surprise to many daily commuters or personnel at newer metros. In 2019, developers at NYCT gained full access to the legacy signal system’s underlying track circuit occupancy data and developed an algorithm to automatically track trains and match these data with schedules and manual dispatchers’ logs in real time. This data-driven solution enables real-time train identification and tracking long before a full system modernization could be completed. This information is being provided to select personnel as part of a pilot program via several different tools with the aim of improving service management and reporting.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Real-Time Data to Detect Delays and Improve Customer Communications at New York City Transit;Transportation Research Record: Journal of the Transportation Research Board;2021-02-17

2. Algorithm for Tracing Train Delays to Incident Causes;Transportation Research Record: Journal of the Transportation Research Board;2020-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3