Affiliation:
1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA
Abstract
Many transit providers changed their schedules and route configurations during the COVID-19 pandemic, providing more frequent bus service on major routes and curtailing other routes, to reduce the risk of COVID-19 exposure. This research first assessed the changes in Metropolitan Atlanta Rapid Transit Authority (MARTA) service configurations by reviewing the pre-pandemic versus during-pandemic General Transit Feed Specification (GTFS) files. Energy use per route for a typical week was calculated for pre-pandemic, during-closure, and post-closure periods by integrating GTFS data with MOVES-Matrix transit energy and emission rates (MOVES signifying MOtor Vehicle Emission Simulator). MARTA automated passenger counter data were appended to the routes, and energy use per passenger-mile was compared across routes for the three periods. The results showed that the coupled effect of transit frequency shift and ridership decrease from 2019 to 2020 increased route-level energy use for over 87% of the routes and per-passenger-mile energy use for over 98% of the routes. In 2021, although MARTA service had largely returned to pre-pandemic conditions, ridership remained in an early stage of recovery. Total energy use decreased to about pre-pandemic levels, but per-passenger energy use remained higher for more than 91% of routes. The results confirm that while total energy use is more closely associated with trip schedules and routes, per-passenger energy use depends on both trip service and ridership. The results also indicate a need for data-based transit planning, to help avoid inefficiency associated with over-provision of service or inadequate social distancing protection caused by under-provision of service.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献