Comparison of Discrete Choice and Machine Learning Models for Simultaneous Modeling of Mobility Tool Ownership in Agent-Based Travel Demand Models

Author:

Püschel Jasper1ORCID,Barthelmes Lukas1ORCID,Kagerbauer Martin1ORCID,Vortisch Peter1ORCID

Affiliation:

1. Karlsruhe Institute of Technology, Institute for Transport Studies, Karlsruhe, Germany

Abstract

Individual travel behavior, such as mode choice, is determined to a distinct degree by the respective portfolio of available mobility tools, such as the number of cars, public transit pass ownership, or a carsharing membership. However, the choice of different mobility tools is interdependent, and individuals weigh alternatives against each other. This process of parallel trade-offs is currently not reflected in typically used sequential logit models of agent-based travel demand models. This study fills this research gap by applying discrete choice and neural network models on a synthetic population to model multiple mobility tool ownership simultaneously. Using data from a national household travel survey, both model types approximated the given target distributions of mobility tools more accurately than the sequence of three corresponding logit models. Owing to its greater flexibility, the tested shallow and deep neural network exhibited higher predictive accuracy than simultaneous discrete choice models. The results indicated that neural networks with only one hidden layer were more robust and easier to formulate and interpret than deep networks with three hidden layers. Finally, the flat neural network was applied to a different synthetic population resulting in equally accurate results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3