Pozzolanic Reactivity of High-Alkali Supplementary Cementitious Materials and Its Impact on Mitigation of Alkali-Silica Reaction

Author:

Wang Weiqi1ORCID,Roberts James1ORCID,Rangaraju Prasad1ORCID

Affiliation:

1. Glenn Department of Civil Engineering, School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC

Abstract

The growing scarcity of conventional supplementary cementitious materials (SCMs) such as Class F, Class C fly ashes, and slag has necessitated exploring alternative SCMs previously considered suboptimal. In particular, high-alkali SCMs are often avoided because of the potential concern that their alkali content could release into the concrete pore solution, thus exacerbating the potential for alkali-silica reaction (ASR). However, preliminary research indicates that not all high-alkali SCMs are deleterious, and some can effectively suppress the ASR expansive reaction when used in sufficient dosage levels. This study evaluates the feasibility of using high-alkali SCMs, such as high-alkali natural pozzolans and reclaimed fly ashes, focusing on their pozzolanic reactivity and the correlation between the reactivity and their ASR mitigation performance. The pozzolanic reactivity of the SCMs was evaluated by the R3 test per ASTM C1897 and strength activity index test per ASTM C311. Thermogravimetric analysis was used to determine the calcium hydroxide consumption by the SCMs. ASR mitigation performance of SCMs was evaluated in accordance with American Association of State Highway and Transportation Officials (AASHTO) T380 miniature concrete prism test. Additionally, pore solution expression and analysis of paste specimens were conducted to determine the correlation between the total alkali and the released alkali levels into the pore solution. Based on the results of this study, all SCMs indicated high pozzolanic reactivity; however, individual performance varied by test method. Ultimately, the high-alkali SCMs, particularly natural pozzolans, did not appear to release any significant levels of alkalis into the pore solution readily and, therefore, show potential for ASR mitigation when used in sufficient dosage levels.

Publisher

SAGE Publications

Reference45 articles.

1. ASTM International. ASTM C618-22, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken, PA, 2022. http://www.astm.org/cgi-bin/resolver.cgi?C618-22. Accessed August 25, 2022.

2. Sustainability of Concrete Construction

3. Concrete needs to lose its colossal carbon footprint

4. IEA [Internet]. Global CO2 Emissions Rebounded to Their Highest Level in History in 2021 – News. https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021. Accessed September 4, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3