Utilizing Nano Silica to Reduce Calcium Oxychloride Formation in Cementitious Materials

Author:

Westbrook Mallory A.1,Ghantous Rita M.2ORCID,Weiss W. Jason2ORCID,Belkowitz Jon S.1

Affiliation:

1. Intelligent Concrete, LLC, Colorado Springs, CO

2. Oregon State University, Corvallis, OR

Abstract

This paper examines the use of two nano silica (NS) materials as an additive that can reduce the susceptibility of concrete to deicing salt damage. The motivation for this research is to evaluate whether NS can be used to improve resistance to calcium oxychloride formation because of deicing salts. Deicing salts, like calcium chloride and magnesium chloride, can react with water and calcium hydroxide in concrete to form an expansive product called calcium oxychloride. This work builds on previous observations that supplementary cementitious materials (SCMs), such as Class F fly ash, slag, and silica fumes, can reduce calcium oxychloride formation through dilution of the cement, which results in a reduction in calcium hydroxide and the pozzolanic reaction, which further reduces calcium hydroxide through chemical reaction. This paper investigates whether NS additions during the mixing process can provide similar results to other SCMs. Both NSs had the same particle size distribution and specific surface area, but NS2 had alumina on the surface while NS1 did not. Toward this end, the calcium hydroxide content and calcium oxychloride were measured using thermal gravimetric analysis and low-temperature differential scanning calorimetry, respectively. The addition of NS to a mixture was found to reduce the calcium oxychloride at lower dosages as compared to Class F fly ash.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3