Field Investigation of Relationship between Pavement Surface Texture and Friction

Author:

Kouchaki Sareh1,Roshani Hossein2,Prozzi Jorge A.3,Garcia Natalia Zuniga1,Hernandez Joaquin Bernardo4

Affiliation:

1. Department of Civil, Architectural, and Environmental, The University of Texas at Austin, Austin, TX

2. City of San Antonio, Streets Engineering & Infrastructure Management, Transportation and Capital Improvements (TCI), TX

3. International Center for Partnered Pavement Preservation, Department of Civil, Architectural, and Environmental, The University of Texas at Austin, Austin, TX

4. Center for Transportation Research, The University of Texas at San Antonio, Austin, TX

Abstract

Proper tire–pavement interaction is essential for the safety of motorists. Pavement surface texture is a major contributing factor to tire–pavement friction. This study performed a series of statistical analyses of field-measured friction and texture data to find the texture–friction correlation. Three test sections with different pavement types were selected within the state of Texas. Data were collected at three locations in the right wheel path and three locations in the center of the lane for each test section. To measure the texture data, the researchers used the circular track meter (CTM) and a prototype measurement device developed in-house and consisting of a line laser scanner (LLS). Friction measurements were obtained with the dynamic friction tester (DFT) and Grip-Tester. The mean profile depth (MPD) was calculated by using the measured texture data. The relationship between the MPD values and the friction numbers obtained from the Grip-Tester and DFT was investigated at speeds of 50 and 70 km/h (31.1 and 43.5 mph). The repeatability and reliability of both the developed LLS prototype and the Grip-Tester were also evaluated, as well as the effect of test speed on friction measurement. The results indicated a strong positive correlation between the texture and friction data. In addition, the developed LLS prototype was able to scan the pavement surface texture more reliably and precisely than the CTM in terms of vertical and horizontal resolution. The Grip-Tester showed promising results compared with the DFT with regards to the friction measurement.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3