Localization of Relevant Urban Micro-Consolidation Centers for Last-Mile Cargo Bike Delivery Based on Real Demand Data and City Characteristics

Author:

Rudolph Christian12ORCID,Nsamzinshuti Alexis3ORCID,Bonsu Samuel2ORCID,Ndiaye Alassane Ballé3,Rigo Nicolas4

Affiliation:

1. Endowed BMVI-Professorship for Cycle Transport, Technical University of Applied Sciences Wildau, Wildau, Germany

2. Department of Commercial Transport, German Aerospace Center (DLR), Institute of Transport Research, Berlin, Germany

3. Qalinca Labs, Université Libre de Bruxelles - Ecole polytechnique, Brussels, Belgium

4. DART Consulting sprl, Brussels, Belgium

Abstract

The use of cargo cycles for last-mile parcel distribution requires urban micro-consolidation centers (UMC). We develop an approach to localize suitable locations for UMCs with the consideration of three criteria: demand, land use, and type of road. The analysis considers metric levels (demand), linguistic levels (land use), and cardinal levels (type of road). The land-use category is divided into commercial, residential, mixed commercial and residential, and others. The type of road category is divided into bicycle road, pedestrian zone, oneway road, and traffic-calmed road. The approach is a hybrid multi-criteria analysis combining an Analytical Hierarchical Process (AHP) and PROMETHEE methods. We apply the approach to the city center of Stuttgart in Germany, using real demand data provided by a large logistics service provider. We compared different scenarios weighting the criteria differently with DART software. The different weight allocation results in different numbers of required UMCs and slightly different locations. This research was able to develop, implement, and successfully apply the proposed approach. In subsequent steps, stakeholders such as logistics companies and cities should be involved at all levels of this approach to validate the selected criteria and depict the “weight” of each criterion.

Funder

interreg

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3