Affiliation:
1. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA
Abstract
A significant fraction of communications between air traffic controllers and pilots is through speech, via radio channels. Automatic transcription of air traffic control (ATC) communications has the potential to improve system safety, operational performance, and conformance monitoring, and to enhance air traffic controller training. We present an automatic speech recognition model tailored to the ATC domain that can transcribe ATC voice to text. The transcribed text is used to extract operational information such as call-sign and runway number. The models are based on recent improvements in machine learning techniques for speech recognition and natural language processing. We evaluate the performance of the model on diverse datasets.
Funder
ACRP Graduate Research Award Program
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献