Freight Operational Characteristics Mined from Anonymous Mobile Sensor Data

Author:

Akter Taslima1ORCID,Hernandez Sarah2ORCID,Camargo Pedro V.3ORCID

Affiliation:

1. CPCS Transcom Inc., Washington, DC

2. Department of Civil Engineering, University of Arkansas, Fayetteville, AR

3. Outer Loop Consulting Pty, Brisbane, Australia

Abstract

Effective transportation performance measurement (TPM) benefits from ubiquitous transportation system monitoring both spatially and temporally. In the context of freight-oriented TPM, traditional devices such as inductive loops, cameras, manual counts, and so forth, may fail to provide comprehensive and high-resolution coverage, providing, for example, only volume counts for a small subset of links across a large network with no indication of trip linkages. New sources of big data from mobile sensors including on-board global positioning system (GPS) devices allow more comprehensive network coverage and insights into trip chaining behaviors. However, to gain actionable insights into system performance from large and noisy streams of mobile sensor data, it is necessary to mine it for relevant operational characteristics of the trucks it represents. Such characteristics include stop locations, stop duration, stop time of day, trip length, and trip duration. To address this methodological need, this paper presents three heuristic algorithms: “stop identification,”“path identification,” and “trip identification.” To address the issue of determining relevant operational characteristics, a multinomial logit (MNL) model approach is applied to determine the commodity carried based on the outputs of the heuristic algorithms. The MNL model is novel in that it relates operational characteristics to commodity carried thus filling a critical data gap that currently limits the development of advanced freight forecasting models. The set of models developed in this paper allow large-scale GPS data to be used for freight planning while maintaining levels of data anonymity that allow such data to be shared with public agencies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference27 articles.

1. A conceptual framework for agent-based modelling of logistics services

2. CPCS. NCFRP 49 [Final]: Understanding and Using New Data Sources to Address Urban and Metropolitan Freight Challenges. 2018. http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=3593.

3. Expanding the Uses of Truck GPS Data in Freight Modeling and Planning Activities

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3