Effects of Periodic Location Update Polling Interval on the Reconstructed Origin–Destination Matrix: A Dutch Case Study Using a Data-Driven Method

Author:

Eftekhar Zahra1,Pel Adam1ORCID,van Lint Hans1ORCID

Affiliation:

1. Department of Transport and Planning, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, The Netherlands

Abstract

Global System for Mobile Communications (GSM) data provides valuable insights into travel demand patterns by capturing people's consecutive locations. A major challenge, however, is how the polling interval (PI; the time between consecutive location updates) affects the accuracy in reconstructing the spatio-temporal travel patterns. Longer PIs will lead to lower accuracy and may even miss shorter activities or trips when not properly accounted for. In this paper, we analyze the effects of the PI on the ability to reconstruct an origin–destination (OD) matrix. We also propose and validate a new data-driven method that improves accuracy in case of longer PIs. The new method first learns temporal patterns in activities and trips, based on travel diaries, that are then used to infer activity-travel patterns from the (sparse) GSM traces. Both steps are data-driven thus avoiding any a priori (behavioral, temporal) assumptions. To validate the method we use synthetic data generated from a calibrated agent-based transport model. This gives us ground-truth OD patterns and full experimental control. The analysis results show that with our method it is possible to reliably reconstruct OD matrices even from very small data samples (i.e., travel diaries from a small segment of the population) that contain as little as 1% of the population’s movements. This is promising for real-life applications where the amount of empirical data is also limited.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3