Friction and Snow–Pavement Bond after Salting and Plowing Permeable Friction Surfaces

Author:

Akin Michelle1,Fay Laura2,Shi Xianming3

Affiliation:

1. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA

2. Western Transportation Institute, Montana State University, Bozeman, MT

3. Department of Civil and Environmental Engineering, WSU Strategic Research Initiative Stormwater Program, Washington State University, Pullman, WA

Abstract

Open graded, ultrathin, and permeable friction course surfaces (collectively referred to as PFSs) have been successfully used by many transportation agencies in several countries as a wearing surface to help reduce water splash and spray, reduce potential for hydroplaning, increase friction, and reduce noise. Despite these advantages, when used in colder climates PFSs tend to freeze more rapidly, transport deicing/anti-icing chemicals from the road surface, clog from sands and other debris, and retain snow and ice for a longer period of time. Most of the reported difficulties with PFSs are at near-freezing temperatures (28°F–35°F). Laboratory tests were conducted using samples of traditional dense graded pavement (DGP), cores from new and old in-service open graded friction course pavements, and ultrathin friction course samples made from hot mix asphalt collected from paving operations. The tests were conducted in a walk-in environmental chamber at 28°F. Snow–pavement bond strength and static friction were measured to determine the effectiveness of anti-icing with salt brine and deicing with dry and pre-wet solid salt. The test results revealed that compacted snow bonds more strongly to PFSs, yet friction of PFSs was significantly greater than DGPs after snow removal, even without the use of salt. The PFSs appeared more white and snowy, and this appearance may be contributing to unnecessarily high application rates of salt by practitioners. Field testing is recommended to better understand the frictional behavior of PFSs during a variety of winter storm conditions and deicer application strategies.

Funder

Clear Roads

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3