Micromechanical Modeling Approach to Predict Compressive Dynamic Moduli of Asphalt Mixtures Using the Distinct Element Method

Author:

You Zhanping1,Buttlar William G.2

Affiliation:

1. Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295.

2. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 1212 Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801.

Abstract

A clustered distinct element method (DEM) approach is presented as a research tool for modeling asphalt concrete microstructure. The approach involves the processing of high-resolution optical images to create a synthetic, reconstructed mechanical model that appears to capture many important features of the complex morphology of asphalt concrete. Uniaxial compression tests in the laboratory were employed to measure the dynamic modulus of sand mastic (a very fine sand–asphalt mixture) and asphalt mixtures at three temperatures and four loading frequencies. For a coarse mixture considered in this study, it was found that a two-dimensional (2-D) clustered DEM provided good estimates of mixture dynamic modulus across a range of loading temperatures and frequencies without calibration. However, for a fine-grained mixture, the uncalibrated predictions of the 2-D model were found to reside near the lower theoretical bounds and well below experimentally determined moduli, most likely because of current limitations in scanning and modeling resolution and the nature of the 2-D microstructural description. Work is under way to extend the model to three dimensions and to consider linear viscoelastic behavior in the mastic. That notwithstanding, the current modeling approach was successfully implemented in recent follow-up studies to portray bulk material behavior in conjunction with fracture models to study crack behavior in hot-mix asphalt.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference25 articles.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3