Development of Probabilistic Viscoelastic Continuum Damage Model for Asphalt Concrete

Author:

Kassem Hussein1,Chehab Ghassan2,Najjar Shadi2

Affiliation:

1. Department of Civil and Environmental Engineering, Beirut Arab University, Beirut, Lebanon

2. Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon

Abstract

The main objective of this paper is to develop a realistic probabilistic framework for characterization of different types of asphalt concrete using advanced material modeling. The adopted methodology builds on and enhances a viscoelastic continuum damage (VECD) material model by utilizing a suite of associated experimental testing protocols and incorporating the uncertainties associated with the different material properties. The modeled uncertainties address the variabilities and errors associated with the linear viscoelastic (LVE) functions achieved from the complex modulus test and damage characteristic curves obtained from constant crosshead rate testing. A probabilistic scheme using First Order approximations and Monte Carlo simulations is developed to characterize the inherent uncertainty of each of the LVE functions over the time domain of their mastercurves. For damage characteristic curves, the uncertainty in normalized pseudostiffness increases as the level of damage becomes larger. The uncertainties of LVE properties are propagated along with those of C versus stress curves to yield a probabilistic viscoelastic continuum damage model (P-VECD). The P-VECD not only predicts the average viscoelastic response to a given loading input, but it can also provide its distribution, which is essential for a reliability-based pavement design.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3