Reliability Analysis of Bridges for Autonomous Truck Platoons

Author:

Sajid Sikandar1ORCID,Chouinard Luc1,Legeron Frederic2,Ude Todd2,He Eddie2,Ajrab Jack2

Affiliation:

1. Civil Engineering and Applied Mechanics, McGill University, Montreal, Québec, Canada

2. Parsons Corporation, Centerville, Virginia

Abstract

Autonomous truck platoon (ATP) deployment on road networks has recently attracted significant interest for its potential economic and environmental benefits. However, the impact of platooning on bridges is a concern because of the differences in their live load characteristics compared with those in the existing bridge design specifications. One of the primary aspects in the safe deployment of ATP is to evaluate the reliability of bridge designed using the existing provisions for live loads from potential configurations of ATP. An analysis procedure is proposed and demonstrated for a simple span steel composite bridge designed according to the existing design provisions. Given that many characteristics of the live load distribution such as the bias factor, coefficient of variation (CoV), and the dynamic amplification factor are presently not known for ATP, a parametric approach is used. The bias factor, dynamic amplification, and CoV are parametrized to calculate the live load distribution and quantify its impact on the reliability index. A two-truck platoon with different headway spacings constituted by different trucks in a single lane scenario is considered. The results indicate that the two single lane bridges designed according to existing design specifications are generally reliable (i.e., achieved the target reliability for which the bridge was initially designed) for the range of ATP live loads investigated when the CoV is less than 0.07, bias close to one and headway distances are above 17 ft. Future studies are suggested to include bridges with multiple spans, other bridge types, and a larger number of trucks in the platoons. The main contribution of this paper is to quantify the reliability indices of selected steel composite bridges designed using the existing specifications but subjected to various configurations of ATP loads and the influence of different components of the live load model attributed to the latter.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference22 articles.

1. Planning of truck platoons: A literature review and directions for future research

2. An automated truck platoon for energy saving

3. Bureau-of-Transportation-Statistics. 2017 CFS Preliminary Data. U.S. Department of Transportation, December 2018. https://www.bts.gov/surveys/commodity-flow-survey/2017-cfs-preliminary-data.

4. The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3