Dynamic Viscoelastic Response of Asphalt Pavement With Random Transversely Isotropic Base Courses

Author:

You Lingyun1ORCID,Wu Hao-Jie12,Lu Jia-Tai3,Liu Yang14ORCID,Diab Aboelkasim5ORCID,Zheng Jun-Jie3,Miao Yu1

Affiliation:

1. School of Civil and Hydraulic Engineering, Huazhong University of Science & Technology, Wuhan, China

2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China

3. Institute of Geotechnical and Underground Engineering, Huazhong University of Science & Technology, Wuhan, China

4. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

5. Department of Civil Engineering, Aswan University, Aswan, Egypt

Abstract

Diagnosis of the dynamic response of an asphalt pavement structure coupled with involving inherent anisotropic properties of pavement materials serves as a vital tool for pavement analysis and design platforms. The mechanical response of asphalt pavement is strongly influenced by the random anisotropic properties (simplified as transversely isotropic properties in this study) because of the shape, distribution, orientation, degree of compaction, void structure, and so forth, of the granular materials in asphalt pavements. This study aims to introduce a computational framework by generating a three-dimensional finite element-based program to analyze the influence of thermo-viscoelasticity of the asphalt layer and transverse isotropy of the base courses and its randomness on asphalt pavements under the effect of moving vehicle loading. The accuracy and efficiency of the developed numerical program were verified by comparing our results with previous studies. Concurrently, the influences of random field conditions, transversely isotropic properties, and the temperature field were involved in assessing their action on the fatigue life prediction of pavement. It was concluded that the fatigue life of the asphalt pavement model, considering the transverse isotropy of the material, random field, and temperature field, was reduced by 48.1%, which would mislead the state assessment of asphalt pavements. Therefore, during asphalt pavement design and its viscoelastic response analysis, it is recommended to consider the influence of the random modulus, temperature fields, and transversely isotropic properties on the structural assessments.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3