Study of Longitudinal-Joint Construction Techniques in Hot-Mix Asphalt Pavements

Author:

Kandhal Prithvi S.1,Mallick Rajib B.1

Affiliation:

1. National Center for Asphalt Technology, 211 Ramsay Hall, Auburn University, Auburn, Ala. 36849. R. B. Mallick, Auburn University, Auburn, Ala. 36849-5354.

Abstract

There is a need to identify suitable longitudinal-joint construction techniques for multilane, hot-mix asphalt pavements that can minimize or eliminate cracking at the joint and raveling adjacent to the joint. It is believed that the longitudinal cracks result primarily from the density gradient that is usually encountered across the joint. This density gradient can be attributed to low density at the unconfined edge when the first lane is paved and relatively high density at the confined edge when the adjacent lane is paved. Seven different longitudinal-joint construction techniques were used on I-25 in Colorado in 1994, including various rolling procedures to compact the joint, provision of a vertical face with a cutting wheel, and use of rubberized asphalt tack coat on the face of the unconfined edge. Two longitudinal-joint construction techniques were used on I-79 in Pennsylvania in 1994: the conventional technique (control) and the New Jersey–type wedge joint. The latter technique uses a 3:1 taper at the unconfined edge of the first lane. The face of the taper is heated with an infrared heater before the adjacent lane is placed. Pavement cores were taken on the joint and 305 mm (1 ft) away from the joint for density measurements in all experimental test sections. Different techniques for joint construction have been ranked on the basis of statistical analysis of all density data. Various joints were also evaluated visually by teams of at least four engineers in June 1995. The performance, or ranking, of the joints in both Colorado and Pennsylvania projects after one winter seems to have been influenced by the overall density at the joint. The joints with high densities indicate better performance than those with relatively low densities. These rankings may change in the future on the basis of the long-term performance as measured by cracking and raveling.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference6 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3