Deadhead Minimization with a Flexible Facility Locator Tool

Author:

Todd Kara12ORCID,Brandel-Tanis Freyja12ORCID,Arias Daniel12,Edison Watkins Kari1ORCID

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

2. School of City & Regional Planning, Georgia Institute of Technology, Atlanta, GA

Abstract

As transit agencies expand, they may outgrow their existing bus storage and service facilities. When selecting a site for an additional facility, an important consideration is the change in bus deadhead time, which affects the agency’s operating costs. Minimizing bus deadhead time is the subject of many studies, though agencies may lack the necessary software or programming skill to implement those methods. This study presents a flexible tool for determination of bus facility location. Using the R dodgr package, it evaluates each candidate site based on a given bus network and existing depots and calculates the network minimum deadhead time for each potential set of facilities. Importantly, the tool could be used by any transit agency, no matter its resources. It runs on open-source software and uses only General Transit Feed Specification (GTFS) and data inputs readily available to transit agencies in the U.S.A., filling the accessibility gap identified in the literature. The tool is demonstrated through a case study with the Metropolitan Atlanta Rapid Transit Authority (MARTA), which is considering a new bus depot as it builds its bus rapid transit network. The case study used current MARTA bus GTFS data, existing depot locations, and vacant properties from Fulton County, Georgia. The tool evaluated 17 candidate sites and found that the winning site would save 29.7 deadhead hours on a typical weekday, which translates to more than $12,000 daily based on operating cost assumptions. The output provides important guidance to transit agencies evaluating sites for a new bus depot.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference2 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3