Effect of Construction Quality, Temperature, and Rutting on Initiation of Top-Down Cracking

Author:

de Freitas Elisabete Fraga1,Pereira Paulo1,Picado–Santos Luis2,Papagiannakis A. Thomas3

Affiliation:

1. Department of Civil Engineering, University of Minho, Campus de Azurém, 4800 058 Guimarães, Portugal.

2. Department of Civil Engineering, University of Coimbra, Pinhal de Marrocos, 3030 290 Coimbra, Portugal.

3. Department of Civil and Environmental Engineering, Washington State University, Pullman WA, 99164-2910.

Abstract

Top-down cracking (TDC) is a flexible pavement distress caused by a number of factors, including high contact stresses from truck tires, mix design characteristics (e.g., binder type and aggregate gradation), and poor construction quality (e.g., segregation and compaction methods). This paper presents the findings of a study seeking to quantify the effect of those factors on TDC. The study consists of a laboratory component involving an accelerated wheel-tracking device and a modeling component involving a 3-D nonlinear viscoelastic finite element model. The laboratory component of the study involved 17 asphalt bituminous slabs constructed to simulate the variation in material properties observed in the field as part of an earlier forensic TDC study. The effect on TDC of air voids, bitumen content and type, aggregate gradation, and segregation were studied under three temperature conditions. Air voids, segregation, and binder content were found to have a significant effect on TDC for all temperatures tested. Modeling the TDC involved laboratory testing to establish the viscoelastic and tensile strength properties of the asphalt mixtures tested. It was found that the rutted surface contributes significantly to TDC initiation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference12 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3