Affiliation:
1. Glenn Department of Civil Engineering, Clemson University, Clemson, SC
2. Division of Computer Science, School of Computing, Clemson University, Clemson, SC
Abstract
A connected vehicle (CV) environment is comprised of diverse computing infrastructure, data communication and dissemination, and data collection systems that are vulnerable to the same cyberattacks as all traditional computing environments. Cyberattacks can jeopardize the expected safety, mobility, energy, and environmental benefits from CV applications. As cyberattacks can lead to severe consequences such as traffic incidents, it has become one of the primary concerns in CV applications. In this paper, we evaluate the impact of cyberattacks on the vehicle-to-infrastructure (V2I) network from a V2I application point of view. Then, we develop a novel V2I cybersecurity architecture, named CVGuard, which can detect and prevent cyberattacks on the V2I applications. In designing CVGuard, key challenges, such as scalability, resiliency and future usability were considered. A case study using a distributed denial of service (DDoS) attack on a V2I application, “Stop Sign Gap Assist (SSGA)” application, shows that CVGuard was effective in mitigating the adverse safety effects created by a DDoS attack. In our case study, because of the DDoS attack, conflicts between the minor and major road vehicles occurred at an unsignalized intersection, which could have caused crashes. A reduction of conflicts between vehicles occurred because CVGuard was in operation. The reduction of conflicts was compared based on the number of conflicts before and after the implementation and operation of the CVGuard security platform. Analysis revealed that the strategies adopted by CVGuard were successful in reducing the conflicts by 60% where a DDoS attack compromised the SSGA application at an unsignalized intersection.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献