Adaptive Headway Control Algorithm for Mixed-Traffic Stabilization and Optimization with Automated Cars and Trucks

Author:

Xiao Xiao1ORCID,Zhang Yunlong1,Wang Xiubin B.1,Guo Xiaoyu1ORCID

Affiliation:

1. Texas A&M University System, College Station, TX

Abstract

Automated vehicle (AV) technology provides an opportunity to increase capacity and reduce congestion while maintaining stability and flow rate by allowing AVs to control their movements using references such as vehicle headways. Studies have been conducted on advancing the control algorithm of automated cars, and recent research has focused on different AV market penetration ratios. However, a straightforward way to control AVs using model parameters considering different AV types (i.e., cars and trucks) has seldom been both investigated and implemented. A method is developed to show the feasibility of controlling AVs using the desired headway as a variable to ensure stability and satisfy demand. The proposed adaptive headway control method for automated vehicles can stabilize flow and optimize flow rate in a mixed-traffic environment with four vehicle types: (1) AV cars, (2) non-AV cars, (3) AV trucks, and (4) non-AV trucks. At various AV market penetration ratios and truck percentages, the relationship between AV headways and stability is investigated. The model is implemented and tested in a simulation environment based on real-time interactions of the External Driver Model and VISSIM. Numerical analyses demonstrate that if the truck percentage is 80% or less, traffic is stable with the proposed control algorithm. The proposed algorithm is evaluated in microscopic simulation. Compared with the baseline case with no headway control, the proposed adaptive headway control algorithm can lead to less oscillation in traffic flow and can also reduce the delay by 23.19% while increasing the average travel speed up to 9.09%.

Funder

Freight Mobility Research Institute

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the mixed traffic capacity of minor roads at a priority intersection;Physica A: Statistical Mechanics and its Applications;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3