Delay Propagation in Large Railway Networks with Data-Driven Bayesian Modeling

Author:

Li Boyu1,Guo Ting1,Li Ruimin2,Wang Yang1,Ou Yuming1,Chen Fang1ORCID

Affiliation:

1. Data Science Institute, University of Technology Sydney, Sydney, Australia

2. Bureau of Statistics and Analytics, Transport for New South Wales, Sydney, Australia

Abstract

Reliability and punctuality are the key evaluation criteria in railway service for both passengers and operators. Delays spanning over spatial and temporal dimensions significantly affect the reliability and punctuality level of train operation. The optimization of capacity utilization and timetable design requires the prediction of the reliability and punctuality level of train operations, which is determined by train delays and delay propagation. To predict the punctuality level of train operations, the distributions of arrival and departure delays must be estimated as realistically as possible by taking into account the complex railway network structure and different types of delays caused by route conflict and connected trips. This paper aims to predict the propagation of delays on the railway network in the Greater Sydney area by developing a conditional Bayesian model. In the model, the propagation satisfies the Markov property if one can predict future delay propagation in the network based solely on its present state just as well as one could knowing the process’s full history, so that it is independent of such historical procedures. Meanwhile, we consider the throughput estimation for the cases of delay caused by interchange line conflicts and train connection in this model. To the best of the authors’ knowledge, this is the first work of data-driven delay propagation modeling that examines both spatial and temporal dimensions under four different scenarios for railway networks. Implementation on real-world railway network operation data shows the feasibility and accuracy of the proposed model compared with traditional probability models.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3