Effectiveness of Idle Reduction Technologies in Reducing Driver Exposure to Diesel Emissions

Author:

Zietsman Josias1,Johnson Jeremy1,Ramani Tara1,Farzaneh Reza1,Rodgers Michael2,Samoylov Alexander2,Xu Yanzhi “Ann”2,Moore Amy2

Affiliation:

1. Environment and Air Quality Division, Texas A&M Transportation Institute, College Station, TX

2. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

Abstract

The purpose of this study was to investigate the effectiveness of idle reduction technologies (IRTs) in reducing driver exposure to diesel exhaust, and to study the cost effectiveness of these technologies. IRTs are devices that provide heating and cooling to the cabin of a truck without idling the truck engine. The focus was on diesel-powered IRTs (auxiliary power units and fuel-operated heaters), and their impact on particulate matter (PM2.5) exposure of drivers sleeping or resting in the truck’s cabin. The focus was on diesel-powered IRTs as these devices generate their own emissions, potentially exacerbating in-cab exposure levels. The project involved initial field data collection at truck stops in the states of Georgia, Texas and California. This was followed by laboratory testing in an environmentally controlled test chamber on a sample of trucks, with and without the use of IRTs. The study findings showed that the use of IRTs resulted in a significant reduction of PM2.5 levels in the truck cabin when compared with the baseline scenario of a truck parked with the engine off and the doors and windows closed. Idling the truck engine and running the air conditioning system was also found to reduce in-cabin PM2.5 levels relative to the baseline. The study supports the premise that IRTs reduce driver exposure to diesel exhaust. Additionally, it was found that these devices are cost effective in that they all have payback periods of less than five years, making them viable alternatives to idling the truck engine during long-duration rest periods.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3