Modeling and Validating Traffic Responsive Ramp Metering in the Highway Capacity Manual Context

Author:

Aghdashi Seyedbehzad1,Davis Joy2,Chase Thomas2,Cunningham Chris2

Affiliation:

1. McTrans Center, University of Florida, Gainesville, FL

2. Institute for Transportation Research and Education, NC State University, Raleigh, NC

Abstract

This paper presents a methodology for modeling traffic responsive (or adaptive) ramp metering in the freeway facilities method based on the sixth edition of the Highway Capacity Manual (HCM6). Currently, the HCM only provides an option to meter on-ramps as user input using 15-min average flow rates with a focus on planning-level analyses. As a result, the possibilities for simulating and modeling ramp meters with any traffic responsive ramp metering algorithm in the HCM context are limited. Moreover, the freeway facilities methodology in the HCM plays a vital role in the analysis of travel time reliability, which is built on a set of operational scenarios. However, with the lack of traffic responsive ramp metering, analysts are burdened with the task of manually entering average effective ramp metering rates for each on-ramp within the set of reliability scenarios. This process can require a substantial amount of time, in addition to increasing the potential for inaccuracy and bias in freeway and performance measure estimations. As a result, this paper is designed to fill a significant research gap by providing a method for analyzing traffic responsive (or adaptive) ramp metering, an active traffic and demand management strategy, using the core freeway facilities methodology in the HCM. The direct application of the method focuses on the MaxView metering algorithm. However, the proposed framework can be used to model any traffic responsive ramp metering algorithm. The results are validated using real-world sites located on the I-540 westbound freeway corridor in North Carolina.

Funder

north carolina department of transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3