Applications of Artificial Intelligence Paradigms to Decision Support in Real-Time Traffic Management

Author:

Chowdhury Mashrur1,Sadek Adel2,Ma Yongchang1,Kanhere Neeraj3,Bhavsar Parth1

Affiliation:

1. Department of Civil Engineering, Lowry Hall Box 340911

2. Department of Civil and Environmental Engineering, University of Vermont, 33 Colchester Ave., 213D Votey, Burlington, VT 05405.

3. Department of Electrical and Computer Engineering, Riggs Hall, Clemson University, Clemson, SC 29634.

Abstract

Decision support for real-time traffic management is a critical component for the success of intelligent transportation systems. Theoretically, microscopic simulation models can be used to evaluate traffic management strategies in real time before a course of action is recommended. However, the problem is that the strategies would have to be evaluated in real time; this might not be computationally feasible for large-scale networks and complex simulation models. To address this problem, two artificial intelligence (AI) paradigms—support vector regression (SVR) and case-based reasoning (CBR)—are presented as alternatives to the simulation models as a decision support tool. Specifically, prototype SVR and CBR decision support tools are developed and used to evaluate the likely impacts of implementing diversion strategies in response to incidents on a highway network in Anderson, South Carolina. The performances of the two prototypes are then evaluated by a comparison of their predictions of traffic conditions with those obtained from VISSIM, a microscopic simulation model. Although the prototype systems’ predictions were comparable to those obtained by simulation, their run times were only fractions of the time required by the simulation model. Moreover, SVR performance is superior to that of CBR for most cases considered. The study results provide motivation for consideration of the proposed AI paradigms as potential decision support tools for real-time transportation management applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3