Improving the Prediction of Annual Average Daily Traffic for Nonfreeway Facilities by Applying a Spatial Statistical Method

Author:

Eom Jin Ki1,Park Man Sik2,Heo Tae-Young3,Huntsinger Leta F.4

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 8601, Raleigh, NC 27695.

2. Department of Statistics, North Carolina State University, Campus Box 8601, Raleigh, NC 27695.

3. Electronics and Telecommunications Research Institute, 161 Gajeong-dong Useong-gu, Daejeon, 505-700, South Korea.

4. Institute for Transportation Research and Education, North Carolina State University, Campus Box 8601, Raleigh, NC 27695.

Abstract

Annual average daily traffic (AADT) data are important for various transportation research areas, including travel model calibration and validation, pavement design, roadway design, and air quality compliance. Specifically for model calibration and validation in long-range transportation planning, a base-year model requires numerous count locations across the study region. Sometimes count data for the lower classified roadways are not readily available. Detailed models require traffic counts for not only higher classifications of roadways such as freeways and arterials but also collector and, in some instances, local roadways. To predict AADT better for desired count locations on nonfreeway facilities, spatial dependency is considered. The theory behind the use of spatial dependency is that the traffic volume at one monitoring station is correlated with the volumes at neighboring stations. The spatial regression model takes into account both spatial trend (mean) and spatial correlation, which is modeled by a geostatistical approach called kriging. The spatial regression model is applied to AADT in Wake County, North Carolina. Results indicate that the overall predictive capability of the spatial regression model is much better than that of the ordinary regression model. In addition, the urban area has more reliable prediction than the rural area. Finally, the spatial regression model is expected to provide better predictions for desired count locations where no observed data currently exists due to budget limitations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3