Evaluation of Glass Powder-Based Geopolymer Stabilized Road Bases Containing Recycled Waste Glass Aggregate

Author:

Xiao Rui1,Polaczyk Pawel1,Zhang Miaomiao1,Jiang Xi1,Zhang Yiyuan2,Huang Baoshan1,Hu Wei1

Affiliation:

1. Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN

2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, P. R. China

Abstract

As the concept of sustainable pavement gains prominence, a growing number of industrial wastes and recycled materials have been utilized in the pavement industry to preserve natural resources. This study investigates the potential use of waste glass powder-based geopolymer cement as a stabilizing agent in recycled waste glass aggregate (GA) bases. Two recycled materials, waste glass powder (GP) and class F fly ash (FF), were used as the raw materials in the preparation of geopolymer. Virgin aggregate (VA) was replaced by GA at varying replacement ratios as the pavement base materials, and the mechanical behaviors before and after geopolymer stabilization were evaluated. Without stabilization, the incorporation of over 10% GA caused significant detrimental effects on the California bearing ratios (CBR) of base materials, which should be carefully managed in pavement construction. However, all geopolymer stabilized samples showed decent strength properties, indicating the effectiveness of geopolymer stabilization. The use of GA reduced the drying shrinkage of base samples, although the mechanical properties were compromised. During the sample preparation, a higher curing temperature and relative humidity resulted in better mechanical behaviors, and the surface of GA could dissolve in alkaline solution and involve in the geopolymerization at 40°C. The microstructure and minerology of geopolymer stabilizer of base materials were characterized by scanning electron microscopy (SEM) and X-ray defraction (XRD) analyses. This study confirmed the promise of using waste glass-based pavement base materials as the greener substitutes and the potential synergy between waste glass recycling and the pavement industry.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3