Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities for Congestion Pricing

Author:

Gurumurthy Krishna Murthy1,Kockelman Kara M.1,Simoni Michele D.1

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX

Abstract

A self-driving, fully automated, or “autonomous” vehicle (AV) revolution is imminent, with the potential to eliminate driver costs and driver error, while ushering in an era of shared mobility. Dynamic ride-sharing (DRS), which refers to sharing rides with strangers en route, is growing, with top transportation network companies providing such services. This work uses an agent-based simulation tool called MATSim to simulate travel patterns in Austin, Texas in the presence of personal AVs, and shared AVs (SAVs), with DRS and advanced road-pricing policies in place. Fleet size, pricing, and fare level impacts are analyzed in depth to provide insight into how SAVs may best be introduced to a city or region. Results indicate that the cost-effectiveness of traveling with strangers overcomes inconvenience and privacy issues at moderate-to-low fare levels, with high fares being more detrimental than the base case. A moderately sized Austin, Texas fleet (one SAV for every 25 people) serves nearly 30% of all trips made during the day. The average vehicle occupancy of this fleet was around 1.48 [after including the 12.7% of SAV vehicle-miles traveled (VMT) empty/without passengers], with a 4.5% increase in VMT. This same fleet performs better when road-pricing is enforced in the peak periods (4 h a day), moderating VMT by 2%, increasing SAV demand and in turn fleet-manager revenue. SAVs are able to earn around $100 per SAV per day even after paying tolls, but only at low-fare levels.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3