Laboratory Evaluation of Rubberized Binder and Mix Containing a Low Content of Devulcanized Rubber Modifier

Author:

Liang Yanlong1,Jones David1,Harvey John T.1,Buscheck Jeffery1

Affiliation:

1. Department of Civil and Environmental Engineering, University of California Pavement Research Center, University of California, Davis, CA

Abstract

This paper evaluates the mechanical properties of rubberized asphalt binder and mix containing 5% and 10% rubber. This rubberized asphalt binder was manufactured in a field-blend process using devulcanized rubber particles, finer than 250 microns, derived from waste tires. Comparison between the rubberized binder and the base binder test results showed that the rubberized binders had higher complex moduli and lower phase angles at the grade temperature. They also had a higher percentage recovery in the multiple stress creep recovery test, and a significant creep stiffness reduction in the bending beam rheometer test. Given the low rubber content and small rubber particle size, this rubberized binder can be used in dense-graded mixes, whereas asphalt rubber binders, with larger rubber particles and higher rubber content (>15%), must be used in gap- or open-graded mixes. This rubberized dense-graded mix met the volumetric design criteria at the same binder content as the control mix prepared with the unmodified base binder. Laboratory tests on the mix included repeated load triaxial, Hamburg wheel track, flexural dynamic modulus, and beam fatigue. The rubberized mixes had slightly lower stiffnesses than the control mix, but better resistance to moisture damage, rutting, and fatigue cracking. A strong linear correlation was found between the carbonyl area index and the rheological properties of the long-term aged binder and fatigue life of the mixes. Based on these findings, these rubber-modified binders can be considered for use in dense-graded mixes to improve overall performance and make use of waste tires.

Funder

california department of transportation

California Department of Resources, Recycling and Recovery

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3