Improved Support Vector Machine Models for Work Zone Crash Injury Severity Prediction and Analysis

Author:

Mokhtarimousavi Seyedmirsajad1,Anderson Jason C.2,Azizinamini Atorod3,Hadi Mohammed1

Affiliation:

1. Department of Civil and Environmental Engineering, Florida International University, Miami, FL

2. Department of Civil and Environmental Engineering, Portland State University, Portland, OR

3. Accelerate Bridge Construction University Transportation Center, Department of Civil and Environmental Engineering, Florida International University, Miami, FL

Abstract

Work zones are a high priority issue in the field of road transportation because of their impacts on traffic safety. A better understanding of work zone crashes can help to identify the contributing factors and countermeasures to enhance roadway safety. This study investigates the prediction of work zone crash severity and the contributing factors by employing a parametric approach using the mixed logit modeling framework and a non-parametric machine learning approach using the support vector machine (SVM). The mixed logit model belongs to the class of random parameter models in which the effects of flexible variables across different observations are identified, that is, data heterogeneity is taken into account. The performance of the SVM model is enhanced by applying three metaheuristic algorithms: particle swarm optimization (PSO), harmony search (HS), and the whale optimization algorithm (WOA). Empirical findings indicate that SVM provides higher prediction accuracy and outperforms the mixed logit model. Estimation results reveal key factors that increase the likelihood of severe work zone crashes. Furthermore, the analysis illustrates the ability of the three metaheuristics to enhance the SVM and the superiority of the harmony search algorithm in improving the performance of the SVM model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3