Impeller meridional plane optimization of pump as turbine

Author:

Sen-chun Miao12ORCID,Zhi-xiao Shi1,Xiao-hui Wang12,Feng-xia Shi12,Guang-tai Shi3

Affiliation:

1. Lanzhou University of Technology, Lanzhou, China

2. Key Laboratory of fluid machinery and systems, Lanzhou, China

3. Xihua University, Chengdu, China

Abstract

How to improve efficiency is still a very active research point for pump as turbine. This article comes up with a method for optimal design of pump as turbine impeller meridional plane. It included the parameterized control impeller meridional plane, the computational fluid dynamics technique, the optimized Latin hypercube sampling experimental design, the back propagation neural network optimized by genetic algorithm and genetic algorithm. Concretely, the impeller meridional plane was parameterized by the Pro/E software, the optimized Latin hypercube sampling was used to obtain the test sample points for back propagation neural network optimized by genetic algorithm, and the model corresponding to each sample point was calculated to obtain the performance values by the computational fluid dynamics techniques. Then, back propagation neural network learning and training are carried out by combining sample points and corresponding model performance values. Last but not least, back propagation neural network optimized by genetic algorithm and genetic algorithm were combined to deal with the optimization problem of impeller meridional plane. According to the aforementioned optimization design method, impeller meridional plane of the pump as turbine was optimized. The result manifests that the optimized pump as turbine energy-conversion efficiency was improved by 2.28% at the optimum operating condition, at the same time meet the pressure head constraint, namely the head difference between initial and optimized model is under the set numeric value. This demonstrates that the optimization method proposed in this article to optimize the impeller meridional plane is practicable.

Funder

Natural Science Fund of Gansu province

National Natural Science Fund of China

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3