Auto-Tuning parameters of motion cueing algorithms for high performance driving simulator based on Kuka Robocoaster

Author:

Pham Duc-An1,Nguyen Duc-Toan1ORCID

Affiliation:

1. Hanoi University of Science, Vietnam

Abstract

Driving simulators have been utilized to test and evaluate products and services for a long time. Their complexity and price range from extremely simple low-cost simulators with a fixed base to very complex high-end and pricey six-degree-of-freedom simulators with the XY table. The recent novel technique that uses an industrial robot - KUKA Robocoaster - as an interactive motion simulator platform, allowing for a highly flexible workspace as well as significantly lower prices due to mass production of the fundamental mechanics. In the constrained workspace of driving simulators, motion cueing algorithms (MCAs) are commonly employed to merge the tilt gravity and translational acceleration components for simulating the linear acceleration in the real vehicle. However, there is a few MCAs developed for the motion platform, almost MCAs were implemented for the standard six-degree-of-freedom simulators in the Cartesian coordinate. The classical MCA in the cylindrical coordinate (ClCy) MCA was first developed for the novel motion platform to take advantage of enormous rotational motion to simulate lateral acceleration while compensating for the bothersome longitudinal acceleration (due to centrifugal acceleration appearing in the rotational motion) with a proper pitch tilted angle. The process of tuning MCAs for the novel motion platform is time-consuming due to both trial and error method and the disturbing motion cues generated by rotational motion, thus it needs the involvement of experts. Although there are several auto-tuning approaches for classical, optimal, and model-predictive control MCA based on fuzzy control theory or genetic optimization method, the methods were purely applied for Cartersian coordinate without taking the bothersome longitudinal acceleration into account. Therefore, this paper firstly presents the process of integrating MCAs in the novel motion platform utilizing rotational motion for simulating lateral acceleration. For the case, besides the ClCy algorithm, the classical algorithm developed for the standart six-degree-of-freedom simulators was a sample implementation due to its popular and familiar characteristics. Secondly, the proposal of the use of the mean-variance mapping optimization (MVMO) for auto-tuning parameters of the two algorithms for reducing both rotational false cues in roll and pitch channel, and longitudinal acceleration as well as washout effect. The simulation results prove that 1) The classical and other MCAs can be applied in the novel motion platform with the proposed motion conversion; 2) both algorithms with auto-tuned parameters have high performance in exploiting effectively the workspace of the motion platform, producing no false cues of angular velocity, conpensating the disturbed longitudinal acceleration, and pulling the motion platform to the initial position after the simulation task; 3) The auto-tuning method is so transparent that can manipulates the specific simulated quantities according to the tuning goals.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3