Optical sensing for real-time detection of food-borne pathogens in fresh produce using machine learning

Author:

Sharma Sunil1ORCID,Tharani Lokesh1

Affiliation:

1. Department of Electronics Engineering, Rajasthan Technical University, Kota, Rajasthan, India

Abstract

Contaminated fresh produce remains a prominent catalyst for food-borne illnesses, prompting the need for swift and precise pathogen detection to mitigate health risks. This paper introduces an innovative strategy for identifying food-borne pathogens in fresh produce samples from local markets and grocery stores, utilizing optical sensing and machine learning. The core of our approach is a photonics-based sensor system, which instantaneously generates optical signals to detect pathogen presence. Machine learning algorithms process the copious sensor data to predict contamination probabilities in real time. Our study reveals compelling results, affirming the efficacy of our method in identifying prevalent food-borne pathogens, including Escherichia coli ( E. coli) and Salmonella enteric, across diverse fresh produce samples. The outcomes underline our approach's precision, achieving detection accuracies of up to 95%, surpassing traditional, time-consuming, and less accurate methods. Our method's key advantages encompass real-time capabilities, heightened accuracy, and cost-effectiveness, facilitating its adoption by both food industry stakeholders and regulatory bodies for quality assurance and safety oversight. Implementation holds the potential to elevate food safety and reduce wastage. Our research signifies a substantial stride toward the development of a dependable, real-time food safety monitoring system for fresh produce. Future research endeavors will be dedicated to optimizing system performance, crafting portable field sensors, and broadening pathogen detection capabilities. This novel approach promises substantial enhancements in food safety and public health.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3