Investigating the optimum stocking density of tilapia (Oreochromis niloticus) for intensive production focused to in-pond raceway system

Author:

Komal Wajeeha1,Fatima Shafaq1ORCID,Minahal Qandeel1,Liaqat Razia1

Affiliation:

1. Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan

Abstract

The primary objective of this trial was to study the effects of stress caused by stocking density in tilapia ( Oreochromis niloticus) cultured in the in-pond raceway system (IPRS). Fingerlings (Initial body weight = 30.00 ± 1.20 g) were reared at different stocking densities i.e. low stocking density (n = 13,000; 1.77 kg/m3), medium stocking density (MSD) (n = 17,000; 2.32 kg/m3), and high stocking density (HSD) (n = 21,000; 2.86 kg/m3), all confined within the raceways of the IPRS. Each group was studied in triplicates. The observed growth revealed a regression in the HSD treatment, evident in its reduced weight gain per fish per day, in contrast to other treatments. Survival rate across all treatments was above 99%. Notably, the HSD treatment exhibited an elevated level of cortisol; however, this intensified crowding stress did not significantly undermine the nutritional value of the fish in HSD and other experimental treatments. Furthermore, an elevation in the levels of superoxide dismutase, catalase, and glutathione peroxidase was noted within the HSD treatment in comparison to the other treatments to reduce the damage caused by reactive oxygen species. As the trial proceeded, functions of digestive enzymes like amylase, protease, and lipase diminished consistently across all treatments. This could possibly signify a deliberate redirection of energy resources toward stress alleviation rather than the usual digestive processes. In summation, it can be reasonably deduced that a stocking density of approximately 2.32 kg/m3 (MSD) emerges as the optimal threshold for effectively cultivating tilapia within an intensive aquaculture framework.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3