Statistical and artificial intelligence techniques to identify risk factors for suicide in children and adolescents

Author:

Servi Michaela1,Chiaro Silvia2,Mussi Elisa1,Castellini Giovanni3,Mereu Alberta4ORCID,Volpe Yary1,Pisano Tiziana2

Affiliation:

1. Department of Industrial Engineering, University of Florence, Florence, Italy

2. Child Neurology and Psychiatry Unit, Neuroscience Department, Children's Hospital A. Meyer IRCCS, Florence, Italy

3. Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy

4. Department of Mental Health and Pathological Addiction, UOSD Child and Adolescent Psychiatry and Psychotherapy, Maggiore Hospital “C.A. Pizzardi” Largo B. Nigrisoli 2, Bologna, Italy

Abstract

Background: Suicidal Behaviors and Thoughts are a relevant public health issue that includes suicidal ideation, non-suicidal self-harm, attempted suicide, and failed suicides. Since there is a progression of suicidal behaviors, whereby suicide is more likely to be completed if there have already been previous behaviors or attempts to harm oneself, WHO has highlighted the need to detect early predictors of such suicidal behaviors, which can help identify individuals at risk, plan prevention strategies and implement specific therapeutic interventions, particularly in young people, thus reducing the number of deaths. This retrospective observational study aimed to identify early predictors of suicidal risk in 237 inpatients admitted for Suicidal Behaviors and Thoughts at Child and Adolescent Psychiatry Emergency Unit of the Meyer Children's Hospital, Florence, Italy. Methods: The study was subdivided into three phases: data collection, statistical analysis, and neural network. For each patient, we collected epidemiological and psychopathological data. We stratified the inpatients into two groups: “suicidal volition patients” and “suicidal motivation patients.” Results: The hospitalization rate for suicidal behaviors and thoughts showed a growing trend from 2016 to 2020 (27.69 to 45.28%). Under 12 years of age, diagnosis of disruptive, impulse-control and conduct disorder, previous specialist care, history of attempted suicide, and intoxication as methods of suicide were statistically correlated to an increased risk of suicidal behaviors. Artificial intelligence, with an accuracy of 86.7%, confirmed these risk factors. Limitations: The most important limitation of the study is its retrospective nature. Conclusions: Our study identifies new early predictors of suicidal risk: age less than 12, diagnosis of disruptive, impulse-control and conduct disorder. In addition, suicidal volition behavior emerges as an important and underestimated risk factor. The use of artificial intelligence methods could be supporting the clinician in assessing suicidal risk.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3