Hybrid optimization algorithm for thermal displacement compensation of computer numerical control machine tool using regression analysis and fuzzy inference

Author:

Chang Ping-Yueh1,Yang Po-Yuan2ORCID,Chou Fu-I1,Chen Shao-Hsien3

Affiliation:

1. Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

2. Department of Intelligent Robotics, National Pingtung University, Pingtung, Taiwan

3. The Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung, Taiwan

Abstract

During the machining process, the computer numerical control machine is susceptible to variations in ambient temperature, cutting heat, and friction within the transmission parts, which generate different heat sources. These heat sources affect the machine structure in different ways, causing deformation of the machine and displacement of the tooltip and workpiece position, ultimately resulting in deviations in machining accuracy. The amount of thermal drift depends on several factors, including the material of the machine components, the cutting conditions, the duration of the machining process, and the environment. This study proposes a hybrid optimization algorithm to optimize the thermal variables of computer numerical control machine tool spindles. The proposed approach combines regression analysis and fuzzy inference to model the thermal behavior of the spindle. Spindle speed and 16 temperature measurement points distributed on the machine are input factors, while the spindle's axial thermal error is considered an output factor. This study develops a regression equation for each speed to account for the different temperature rise slopes and spindle thermal variations at different speeds. The experimental results show that the hybrid thermal displacement compensation framework proposed in this study effectively reduces the thermal displacement error caused by spindle temperature variation. Furthermore, the study finds that the model can be adapted to significant variations in environmental conditions by limiting the machining speed range, which significantly reduces the amount of data needed for model adaptation and shortens the adaptation time of the thermal displacement compensation model. As a result, this framework can indirectly improve product yield. The effects observed in this study are remarkable.

Funder

National Science and Technology Council

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3