Can datasets from long-term biomonitoring programs detect climate change effects on stream benthos?

Author:

Bailey Robert C.1ORCID,Reynoldson Trefor B.1

Affiliation:

1. Ontario Tech University, Faculty of Science, Oshawa, Ontario, Canada

Abstract

We analyzed datasets from a long-term monitoring program of stream ecosystems in British Columbia, Canada, to determine whether or not it could detect climate change effects. In the Fraser River Basin (monitoring timespan 1994-2019), there was a marked (∼50%) increase in alpha diversity in reference streams, while BC North Coast (2004–2021) streams showed a modest trend of decreasing diversity and Columbia River Basin (2003–2018) and Vancouver Island (2001–2019) streams showed modestly increasing diversity. In all four regions, diversity across all sites in a specific period was primarily a function of sampling effort during this period rather than a temporal trend. Across all the regions, only three of 21 groups of faunally similar sites defined by Reference Condition Approach predictive modeling showed a suggestion of a directional change in community structure over time. Only 1 of 15 reference sites that were repeatedly sampled over several years showed a pattern that may indicate a response to changing climate. Three, not mutually exclusive, reasons why we did not see a clear effect of climate change on BC stream ecosystems were: 1) Little or no effect of climate change relative to other, potentially interacting biotic and abiotic factors, 2) The timespan of monitoring was too short to detect cumulative effects of climate change, and, most importantly, 3) The sampling design and protocol were unable to detect climate change effects. To better detect and characterize the effects of climate change on streams in monitoring programs, we recommend annual re-sampling of a few reference sites and detailed analysis of the natural and human environment of the sites along with better characterization of the benthic community (e.g. with eDNA) at all monitored sites.

Funder

BC Ministry of Environment and Climate Change Strategy

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3