Locating abrupt disaster emergency logistics centres using improved artificial bee colony (IABC) algorithm

Author:

Sun Qiang1ORCID,Liu Shupei1

Affiliation:

1. Shandong University of Technology, Zibo, China

Abstract

Emergency management is conceptualized as a complex, multi-objective optimization problem related to facility location. However, little research has been performed on the horizontal transportation of emergency logistics centres. This study makes contributions to the multi-objective locating abrupt disaster emergency logistics centres model with the smallest total cost and the largest customer satisfaction. The IABC algorithm is proposed in this paper to solve the multi-objective emergency logistics centres locating problem. IABC algorithm can effectively calculate the optimal location of abrupt disaster emergency logistics centres and the demand for relief materials, and it can solve the rescue time satisfaction for different rescue sites. (1) IABC has better global search capabilities to avoid premature convergence and provide a faster convergence speed, and it has optimal solution accuracy, solution diversity and robustness. (2) From the three optimal objective function values obtained, the optimal objective function values obtained by IABC algorithm are obviously better than ABC and GABC algorithms. (3) From the convergence curves of three objective functions the global search ability and the stability of IABC algorithm are better than those of ABC and GABC algorithm. The improved ABC algorithm has proven to be effective and feasible. However, emergency relief logistics systems are very complex and involve many factors, the proposed model needs to be refined further in the future.

Funder

Natural Science Fund project of Shandong province

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3