Chaotic prediction of vibration performance degradation trend of rolling element bearing based on Weibull distribution

Author:

Cheng Li1ORCID,Xia Xintao1,Ye Liang2

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, China

2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China

Abstract

Rolling element bearings are used in all rotating machinery, and the degradation performance of rolling element bearings directly affects the performance of the machine. Therefore, high reliability prediction of the performance degradation trend of rolling element bearings has become an urgent research problem. However, the degradation characteristics of the rolling element bearings vibration time series are difficult to extract, and the mechanism of performance degradation is very complicated. The accurate physical model is difficult to establish. In view of the above reasons, based on the vibration performance data of rolling element bearings, a model of bearing performance degradation trend parameter based on wavelet denoising and Weibull distribution is established. Then, the phase space reconstruction of the series of bearing performance degradation trend parameter is carried out, and the prognosis is obtained by the improved adding weighted first-order local prediction method. The experimental results show that the bearing vibration performance degradation parameter can accurately depict the degradation trend of the bearing, and the reliability level is 91.55%; and the prediction of bearing performance degradation trend parameter is satisfactory: the mean relative error is only 0.0053% and the maximum relative error is less than 0.03%.

Funder

natural science foundation of henan province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3