Optimization insulation thickness and reduction of CO2 emissions for pipes in all generation district heating networks

Author:

Terhan Meryem1ORCID

Affiliation:

1. Department of Mechanical Engineering, Engineering and Natural Sciences Faculty, Gumushane University, 29100, Gumushane, Turkey

Abstract

District heating systems are provided solutions for the increasing energy problems in high-population cities. Energy costs go up depending on increasing heat loss in DHS's distribution network. Heat loss from the network consists of 5–20% of transferred energy, and this loss is higher than the other losses in the heating system. In the study, heat losses from the pipes such as supply-return pipes, hot water and circulation pipes into heat canals are investigated based on energy, exergy, economic and environmental. Optimum insulation thicknesses, energy savings, reduction of CO2 emissions, the first investment costs and payback periods of the pipes in the network of all-generation district heating systems are investigated by using Life Cycle Cost Analysis (LCCA) method for fuel types like natural gas, fuel oil and coal. Optimum insulation thicknesses are calculated for different nominal sizes of pipes and various insulation materials such as glass wool, and rock wool for the different climatic zones. According to the results of the study, the heat losses from pipes in the 4th generation DHS network are decreased between 38.19% and 33.33% from the warmest climate zone to the coldest climate zone according to the 3rd generation. Energy savings, reduction of CO2 emissions, payback periods and optimum insulation thickness values of supply and return pipes in the network are respectively changed between 7.80–98.86 $/m, 39.61–322.32 kg CO2/year, 0.028–0.38 years and 0.025–0.0105 m depending on various fuel types, insulation materials, nominal size pipes, climatic zones and all generation types.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3