Obstacle distance measurement based on binocular vision for high-voltage transmission lines using a cable inspection robot

Author:

Huang Le1ORCID,Wu Gongping1ORCID,Liu Jiayang1,Yang Song2,Cao Qi2,Ding Wa1,Tang Wenjie1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan, China

2. State Grid Jilin Electric Power Co., Ltd., Baishan Power Company, Baishan, China

Abstract

Obstacle distance measurement is one of the key technologies for cable inspection robots on high-voltage transmission lines. This article develops a novel method based on binocular vision for extracting the feature points of images and reconstructing 3D scenes. The proposed method seamlessly incorporates camera calibration, dense stereo matching, and 3D reconstruction. We apply a novel calibration method to acquire intrinsic and extrinsic parameters and use an improved Semi-Global Matching (SGM) algorithm based on the least squares fitting interpolation to refine the basic disparity map. Based on the depth information of the optimized disparity map and the principle of binocular vision measurement, a model is established to estimate the distance of an obstacle from the cable inspection robot. Extensive experiments show that the proposed method achieves an estimation accuracy of less than 5% from 0.5 m to 5.0 m, offering extremely high distance estimation accuracy and robustness. The study improves the autonomy and intelligence of inspection robots used in the power industry.

Funder

A State Grid Jilin Electric Power Co., Ltd. Project, China

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3