Recurrent neural network for pitch control of variable-speed wind turbine

Author:

Asghar Aamer Bilal1,Ehsan Raza1,Naveed Khazina2,Al-Ammar Essam A.3ORCID,Ejsmont Krzysztof4ORCID,Nejman Mirosław4

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore, Pakistan

2. Department of Computer Science, Bahria University, Lahore, Pakistan

3. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia

4. Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland

Abstract

Wind is one of the most widely used renewable energy sources due to its cost-effectiveness, power requirements, operation, and performance. There are many challenges in wind turbines, such as wind fluctuation, pitch control, and generator speed control. When the wind speed exceeds its rated value, the pitch angle controller limits the generator output power to its rated value. In this research work, several soft computing techniques have been implemented for pitch control of variable-speed wind turbine. The data is collected for the National Renewable Energy Laboratory offshore 5 MW baseline wind turbine. Wind speed, tip speed ratio, and power coefficient are taken as inputs, and pitch angle as output. Machine learning and artificial intelligence-based techniques such as recurrent neural networks (RNNs), adaptive neuro-fuzzy inference system (ANFIS), multilayer perceptron feed-forward neural network (MLPFFNN), and fuzzy logic controller (FLC) are implemented on MATLAB, and their results are evaluated in terms of mean square error (MSE) and root mean square error (RMSE). The controllers have been implemented in MATLAB/Simulink to schedule the wind turbine blade pitch angle and keep the output power stable at the rated value. The experimental results show that RNN provided the best results for 15 neurons in hidden layers and 1000 epochs with MSE of 3.28e-11 and RMSE of 5.54e-06, followed by MLPFFNN with MSE of 2.17e-10 and RMSE of 1.56e-05, ANFIS with MSE of 8.5e-05 and RMSE of 9.22e-03, and FLC with MSE of 6.25e-04 and RMSE of 0.025. The proposed scheme is more reliable and robust and can be easily implemented on a physical setup by using interfacing cards such as dSPACE, NI cards, and data acquisition cards.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

The European Commission H2020 Program, Project KITT4SME

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3