Study on the university students' satisfaction of the wisdom tree massive open online course platform based on parameter optimization intelligent algorithm

Author:

Lee Chou-Yuan1ORCID,Ruan Ling-Ming1,Lee Zne-Jung2,Huang Jian-Qiong1,Yao Jie1,Ning Zheng-Yuan1,Tu Jih-Fu3

Affiliation:

1. School of Big Data, Fuzhou University of International Studies and Trade, China

2. School of Intelligent Construction, Fuzhou University of International Studies and Trade, China

3. Department of Industrial Engineering and Management, St. John's University

Abstract

Introduction: Curriculum learning through the wisdom tree massive open online course platform not only gets rid of the limitations of specialty, school and region, eliminates the limitations of time and space in traditional teaching, but also effectively solves the problem of educational equity. Objectives: This paper proposes an intelligent algorithm combining decision tree, support vector machine, and simulated annealing to obtain the best classification accuracy and decision rules for university students' satisfaction with the wisdom tree massive open online course platform. Methods: This study takes the university students in Fuzhou city information management department as the survey object, and adopts the electronic questionnaire survey method. A total of 1136 formal questionnaires were responded, and 1028 valid questionnaires were obtained after data cleaning and deleting invalid questionnaires (the effective rate was 90.49%). In this paper, the reliability and validity of the questionnaire were tested by IBM SPSS-20.0 software, and six explanatory variables including function, achievement, exercise, quality, richness, and interaction were obtained by principal component analysis. Then, the questionnaire data is converted to CSV (comma separated values) format for analysis. This paper proposes an intelligent algorithm combining decision tree, support vector machine, and simulated annealing to obtain the best classification accuracy and decision rules for university students' satisfaction with the wisdom tree massive open online course platform. In this paper, the proposed algorithm is compared with decision tree, random forest, k-nearest neighbor, and support vector machine to verify its performance. Results: The experimental results show that training set classification accuracy of decision tree, random forest, k-nearest neighbor, only support vector machine and the proposed algorithm (simulated annealing + support vector machine) are 92.21%, 96.10%, 95.67%, 97.29%, and 99.58%, respectively. Conclusion: The proposed algorithm simulated annealing + support vector machine does increase the classification accuracy. At the same time, the 11 decision rules generated by simulated annealing + decision tree can provide useful information for decision makers.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3