Effect of conglomeration gradation on loess shear strength with different water content

Author:

Kong Dequan1ORCID,Wan Rong12,Zhao Chenkai1,Dai Jiumei1,Dong Tijian1,Ni Weiheng1,Gao Jiang1,Wang Tianchen1

Affiliation:

1. School of Civil Engineering, Chang’an University, Xi’an, China

2. State Key Laboratory of Green Building in Western China, Xi’an University of Architecture & Technology, Xi’an, China

Abstract

Particle gradation and water content are important factors affecting shear strength of soil. However, due to chemical cementation and molecular attraction, loess particles commonly stick together forming conglomerations. Till date, the superposition effect of water content and conglomeration gradation on loess shear strength has rarely been studied and undeniably requires further systematic explorations and development. In this study, loess samples were prepared with three conglomeration gradations and five water contents, and the direct shear tests were systematically performed. The shear strength of sample 1 (continuous conglomeration gradation) was found to be the best, followed by sample 2 (large size conglomerations), and sample 3 (small size conglomerations). The difference of samples’ shear strength decreased with increasing water content, and almost closed to zero when water content was 20%. The cohesion of samples first increased and then decreased with increasing water content, the maximum cohesion occurred at 10% water content. The internal friction angles decreased with increasing water content, and reached similar minimum values when the water content was 15%. The increased percentage values of cohesion and internal friction angle caused by conglomeration gradation are in the range of 33.2%–42.1% and 9.8%–32.5%, respectively. Finally, the empirical formulas for water content-cohesion and water content-internal friction angle of different conglomeration gradations samples were established, and the calculated values are in good agreement with test data. The effect of loess conglomeration gradation on shear strength decreased with increasing water content. When the water content was less than 15%, using a good conglomeration graduation could effectively improve loss shear strength.

Funder

Science and Technology Planning Project of Yulin Technology Division

Shaanxi Postdoctoral Research Funding Project

Students Innovation and Entrepreneurship Training Program of Chang’an University

Natural Science Foundation of Shaanxi Province

The State Key Laboratory Open Project for Green Building in Western China

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3