Machine learning on small size samples: A synthetic knowledge synthesis

Author:

Kokol Peter1ORCID,Kokol Marko2,Zagoranski Sašo2

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

2. Semantika, Maribor, Slovenia

Abstract

Machine Learning is an increasingly important technology dealing with the growing complexity of the digitalised world. Despite the fact, that we live in a ‘Big data’ world where, almost ‘everything’ is digitally stored, there are many real-world situations, where researchers are still faced with small data samples. The present bibliometric knowledge synthesis study aims to answer the research question ‘What is the small data problem in machine learning and how it is solved?’ The analysis a positive trend in the number of research publications and substantial growth of the research community, indicating that the research field is reaching maturity. Most productive countries are China, United States and United Kingdom. Despite notable international cooperation, the regional concentration of research literature production in economically more developed countries was observed. Thematic analysis identified four research themes. The themes are concerned with to dimension reduction in complex big data analysis, data augmentation techniques in deep learning, data mining and statistical learning on small datasets.

Publisher

SAGE Publications

Subject

Multidisciplinary

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3