Affiliation:
1. Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
2. Semantika, Maribor, Slovenia
Abstract
Machine Learning is an increasingly important technology dealing with the growing complexity of the digitalised world. Despite the fact, that we live in a ‘Big data’ world where, almost ‘everything’ is digitally stored, there are many real-world situations, where researchers are still faced with small data samples. The present bibliometric knowledge synthesis study aims to answer the research question ‘What is the small data problem in machine learning and how it is solved?’ The analysis a positive trend in the number of research publications and substantial growth of the research community, indicating that the research field is reaching maturity. Most productive countries are China, United States and United Kingdom. Despite notable international cooperation, the regional concentration of research literature production in economically more developed countries was observed. Thematic analysis identified four research themes. The themes are concerned with to dimension reduction in complex big data analysis, data augmentation techniques in deep learning, data mining and statistical learning on small datasets.
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献