Damage evolution law and failure mechanism of rock impacted by high-pressure water jet under in-situ stress condition

Author:

Liu Fuwei1,Wang Yansen12ORCID,Song Guoxuan1

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China

Abstract

To investigate the real physical mechanism of rock fragmentation subjected to water jet under in-situ stress condition, a numerical model based on the SPH algorithm was established using the rate-dependent constitutive model to simulate the rock-breaking process. First, the damage evolution law of rock impacted by high-pressure water jet under in-situ stress conditions was studied by analyzing the distribution characteristics of the damage field in the dynamic process of water jet impinging. The results showed that the damage field, widths of surface damage, maximum widths of damage and mean depths of damage of rock decreased with the increase of in-situ stress, indicating that the existence of initial in-situ stress had a strong inhibitory effect on rock fragmentation. The attenuation of the maximum widths of damage could be divided into two stages. The mean depths of damage of rock played a leading role in the number of damage elements. Furthermore, on this basis, the real physical mechanism of rock fragmentation subjected to water jet under in-situ stress condition was revealed by analyzing the stress states and damage history variables of the particles in the selected five typical regions. The study showed that the failure type of the upper rock elements in the crushing zone was brittle failure caused by a combination of compressive stress and shear stress with or without in-situ stress. However, the failure mechanisms of rock elements in crack zone were completely different with or without in-situ stress. In the absence of in-situ stress, the failure type of rock impacted by water jet was the coexistence of damage caused by compressive-shear stress and tensile stress, while in the presence of in-situ stress, the failure type of rock impacted by water jet was mainly the damage caused by compressive-shear stress.

Funder

National key research and development program

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3