Ultrasonic testing of rivet in multilayer structure using a convolutional neural network on edge device

Author:

Le Minhhuy12ORCID,Le Duc Vu1,Le Tien Dat2,Lee Jinyi34

Affiliation:

1. Faculty of Electrical and Electronic Engineering, Phenikaa University, Hanoi, Vietnam

2. Intelligent Communication System Laboratory (ICSLab), Phenikaa University, Hanoi, Vietnam

3. IT-based Real-Time NDT Center, Chosun University, Gwangju, Korea

4. Interdisciplinary Program in IT-Bio Convergence System, Chosun University, Gwangju, Korea

Abstract

Rivets are used to assemble layers in the air intakes, fuselages, and wings of an aircraft. After a long time of working under extreme conditions, pitting corrosion could appear in the rivets of the aircraft. The rivets could be broken down and thread the safety of the aircraft. In this paper, we proposed an ultrasonic testing method integrated with convolutional neural network (CNN) for the detection of corrosion in the rivets. The CNN model was designed to be lightweight enough to be able to run on edge devices. The CNN model was trained with a very limited sample of rivets, from 3 to 9 artificial pitting corrosive rivets. The results show that the proposed approach could detect up to 95.2% of pitting corrosion using experimental data with three training rivets. The detection accuracy could be improved to 99% by nine training rivets. The CNN model was implemented and ran on an edge device (Jetson Nano) in real-time with a small latency of 1.65 ms.

Funder

by Vietnam National Foundation for Science and Technology Development

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3