Potential effects of brain lipid binding protein in the pathogenesis of amyotrophic lateral sclerosis

Author:

Zhou Qi1,Kang Qing2,Chen Wenzhi2,Xu Renshi2ORCID

Affiliation:

1. Department of Neurology, The First People's Hospital of Fuzhou City, Fuzhou, China

2. Department of Neurology, Jiangxi Provincial People's Hospital, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China

Abstract

Current studies suggest that the abnormal alteration of brain lipid binding protein (BLBP) might participate in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, the detailed understanding of ALS pathogenesis been yet to be elucidated. Therefore, this research intended to explore the potential effects of BLBP in ALS. The observation and analysis of BLBP-altered features in various anatomical areas and different spinal segments was conducted at the pre-onset, onset, and progression stages of Tg(SOD1*G93A)1Gur (TG) mice and the same periods of age-matched SOD1 wild-type (WT) mice by fluorescence immunohistochemistry and western blotting. BLBP-positive cells were comprehensively distributed in various spinal anatomical areas, especially in both the anterior and posterior horn, around the central canal and in anterior, lateral, and posterior funiculi. Overall, BLBP expression tended to increase from the pre-onset to the onset to the progression stages of the same periods of age-matched WT mice. Furthermore, in TG mice, BLBP expression in the entire spinal cord significantly increased from onset to the progression stage. BLBP was expressed in neurons, astrocytes, and radial glial cells, and at the early and late stages of neural precursor cells (NPCs) and was predominantly distributed outside the cell nucleus. The increase of BLBP-positive cells was closely related to neural cell reduction in TG mice. The distribution and increased expression of BLBP among the cervical, thoracic, and lumbar segments of the spinal cord might participate in the development of ALS and exert potential effects in the pathogenesis of ALS by regulating NPCs.

Funder

Education Department of Jiangxi Province

National Natural Science Foundation of China

Jiangxi Provincial Department of Science and Technology

Health and Family Planning Commission of Jiangxi Province

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3