Method for identifying the impact load condition of thin-walled structure damage based on PSO-BP neural network

Author:

Gu Jinyu1ORCID,Song Xinxin2,Chen Yongdang1

Affiliation:

1. School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an, China

2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

Abstract

Thin-walled structures (TWS) were widely used in engineering equipment, and may be subjected to impact loads to produce different degrees of structural damage during application. However, it is a difficult problem to determine the impact load conditions for these structural damages. In this study, we developed a novel method of identifying the impact load condition of the thin-walled structure damage, which is based on particle swarm optimization-backpropagation (PSO-BP) neural network. First, the known impact position and velocity are applied to the finite element model (FEM) of the TWS to produce permanent plastic deformation, and to fit the characteristic shape of the deformation is needed by invoking the multivariate polynomial function. Then, the method is devoted to build a basic data set. With impact position and velocity as input and function coefficients as output, a model of extended PSO-BP neural network is established. Besides, the basic sample set is expanded to solve the lack of samples. Ultimately, utilizing the expanded total sample set as training data, function coefficients, impact position and velocity will be outputted. On the basis of the known functional coefficients of deformed surfaces, a model of predictive PSO-BP neural network is established and predicted. Furthermore, we predicted the collision position and velocity using a conventional BP neural network in the same way. Finally, the predicted impact position and velocity is compared with the analysis results of the FEM, which verifies that the PSO-BP neural network algorithm has high accuracy.

Funder

Xi'an key laboratory of modern intelligent textile equipment

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3