Modeling thermal energy distribution and transmission networks for household consumption through comparative analysis

Author:

Heidariannoghondar Morteza1ORCID,Ahmadi Abolfazl1ORCID

Affiliation:

1. Department of Energy Systems Engineering, Faculty of New Technologies, Iran University of Science and Technology, Tehran, Iran

Abstract

The high costs of energy supply and variable energy demands in consumption units, especially domestic consumption in different time frames, have accelerated technological developments for the proper use of energy resources to reduce energy consumption. The design of a distribution network for consumption depends on environmental conditions, equipment locations, consumer demands, consumption simultaneity factor, and some other parameters. These factors can mitigate energy loss in transmission networks. This study analyzes effective factors in the thermal energy distribution and transmission systems from generators to household consumers by considering the energy consumption rates in units based on a mathematical model to increase energy consumption in teams and rely on consumption during transmission. For this purpose, energy demands were evaluated in consumption units in a sample one-year project. The results were employed to design an optimal network for transferring energy from generators to consumers by modeling the distribution system. In this study, the thermal energy distribution and transmission network for domestic consumption was assessed and ranked have been assessed and ranked through single-stage distribution (SSD), multistage distribution (MSD), and MSD with the flow bypass method. The results of simulating the MSD system with the flow bypass method indicated the optimal performance of the proposed system in both consumer and generator sectors. This method also reduced fuel consumption by 6.09% and increased electricity consumption of the transmission network by 95% compared with single-stage transmission networks. Moreover, the method yielded a 6.03% reduction in the total cost of energy consumed to provide the thermal load of the building compared with SSD on a yearly basis.

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3