Affiliation:
1. School of Civil Engineering, Chongqing University, China
Abstract
Porous media combustion has significant advantages of high thermal efficiency and low pollution emissions. However, the flow state in the porous media will affect the reaction rate. In order to increase the rate of chemical reactions, the fluid flow resistance in the porous media must be reduced. The pressure drop test of SiC foam ceramics was carried out. By changing the pore density of the experimental materials, the pressure drop characteristics of SiC foam ceramic are tested and analyzed. Based on the classical Ergun equation, a semi-empirical formula for calculating the pressure drop gradient of SiC foam ceramics with the airflow velocity is proposed. The two constants in the formula are calculated by measurement, and the applicability of the formula is verified. This formula can quickly analyze the pressure drop characteristics of SiC foam ceramic materials. The accurate measurement of pressure drop is helpful to determine the rated pressure of the head of foam ceramic burner and reduce the investment of front-end fans in industrial burners.
Funder
Postgraduate Cultivation Fund of Chongqing University